9 research outputs found

    Complexity of correctness for pomset logic proof nets

    Full text link
    We show that it is coNP-complete to decide whether a given proof structure of pomset logic is a correct proof net, using the graph-theoretic used in a previous paper of ours (arXiv:1901.10247).Comment: Fully subsumed by arXiv:2209.07825 (which contains a lot more material and has an additional coauthor

    A System of Interaction and Structure III: The Complexity of BV and Pomset Logic

    Get PDF
    Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is ÎŁ2p\Sigma_2^p-complete. We also make some observations with respect to possible sequent systems for the two logics

    Implicit automata in typed λ\lambda-calculi II: streaming transducers vs categorical semantics

    Full text link
    We characterize regular string transductions as programs in a linear λ\lambda-calculus with additives. One direction of this equivalence is proved by encoding copyless streaming string transducers (SSTs), which compute regular functions, into our λ\lambda-calculus. For the converse, we consider a categorical framework for defining automata and transducers over words, which allows us to relate register updates in SSTs to the semantics of the linear λ\lambda-calculus in a suitable monoidal closed category. To illustrate the relevance of monoidal closure to automata theory, we also leverage this notion to give abstract generalizations of the arguments showing that copyless SSTs may be determinized and that the composition of two regular functions may be implemented by a copyless SST. Our main result is then generalized from strings to trees using a similar approach. In doing so, we exhibit a connection between a feature of streaming tree transducers and the multiplicative/additive distinction of linear logic. Keywords: MSO transductions, implicit complexity, Dialectica categories, Church encodingsComment: 105 pages, 24 figure

    Two-way automata and transducers with planar behaviours are aperiodic

    Full text link
    We consider a notion of planarity for two-way finite automata and transducers, inspired by Temperley-Lieb monoids of planar diagrams. We show that this restriction captures star-free languages and first-order transductions.Comment: 18 pages, DMTCS submissio

    Revisiting the growth of polyregular functions: output languages, weighted automata and unary inputs

    Full text link
    Polyregular functions are the class of string-to-string functions definable by pebble transducers (an extension of finite automata) or equivalently by MSO interpretations (a logical formalism). Their output length is bounded by a polynomial in the input length: a function computed by a kk-pebble transducer or by a kk-dimensional MSO interpretation has growth rate O(nk)O(n^k). Boja\'nczyk has recently shown that the converse holds for MSO interpretations, but not for pebble transducers. We give significantly simplified proofs of those two results, extending the former to first-order interpretations by reduction to an elementary property of N\mathbb{N}-weighted automata. For any kk, we also prove the stronger statement that there is some quadratic polyregular function whose output language differs from that of any kk-fold composition of macro tree transducers (and which therefore cannot be computed by any kk-pebble transducer). In the special case of unary input alphabets, we show that kk pebbles suffice to compute polyregular functions of growth O(nk)O(n^k). This is obtained as a corollary of a basis of simple word sequences whose ultimately periodic combinations generate all polyregular functions with unary input. Finally, we study polyregular and polyblind functions between unary alphabets (i.e. integer sequences), as well as their first-order subclasses.Comment: 27 pages, not submitted ye
    corecore